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Simple efficient algorithm (SEA) for shallow flows with shock
wave on dry and irregular beds
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SUMMARY

An explicit Godunov-type solution algorithm called SEA (simple efficient algorithm) has been introduced
for the shallow water equations. The algorithm is based on finite volume conservative discretisation
method. It can deal with wet/dry and irregular beds. Second-order accuracy, in both time and space,
is achieved using prediction and correction steps. A very simple and efficient flux limiting technique is
used to equip the algorithm with total variation dimensioning property for shock capturing purposes. In
order to make sure about the balance between the flux gradient and the bed slope, treatment of the source
term has been done using a new procedure inspired mainly by the physical rather than mathematical
consideration. SEA has been applied to one-dimensional problems, although it can equally be applied
to multi-dimensional problems. In order to assess the capability of proposed algorithm in dealing with
practical applications, several test cases have been examined. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shock capturing techniques in the framework of finite volume discretisation, especially Godunov-
type methods, have recently drawn more attentions. Introducing new approximate Riemann solvers
and generalization of Godunov’s first-order method to the second-order accuracy are considered
as two significant developments. Although two-dimensional approximate Riemann solvers have
been introduced [1], it is still common to use one-dimensional solvers.

A wide variety of one-dimensional approximate Riemann solvers have been proposed which
can be applied more economically than the exact Riemann solver and yet give equally good results
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in many cases. Approximate Riemann solvers can be categorized as two classes [2]. In one class,
an approximate solution to the conservative variables will be obtained first, and then flux values
will be calculated. The recent work of Julien et al. [3] belongs to this class. Another class directly
gives an approximate value for the flux function. In this paper, this type of approximate Riemann
solver has been used and will be discussed in more detail.

At least five approximate Riemann solvers i.e. Roe, FVS, Osher, HLL and HLLC can be found
in the literature, all of which are based on the characteristics theory. The Roe solver is based on
a characteristic decomposition of flux differences while ensuring the conservative property [4]. It
is not entropy satisfying and it needs an ‘entropy fix’ in practical applications [4, 5]. Also the Roe
solver cannot strictly handle situations involving dry bed states [2, 6] and in fully two-dimensional
cases, it seems to give some mono-directionality effects [7]. In the FVS or Flux Vector Splitting
method, a key problem is its reliance on special property of the equations, namely the homogeneity
property of the flux vector [4, 8], which is not satisfied by the shallow water equations. This may
however be circumvented, but it needs some special treatment [9]. Also the FVS is not entropy
satisfying [10]. The Osher’s scheme uses the Riemann invariants to estimate the flux. It is entropy
satisfying with good accuracy. The only shortcoming is its complexity. Zhao et al. [9] studied the
Osher, Roe and FVS solvers and concluded that the Osher’s scheme is the most accurate, the FVS
is the most numerically stable with respect to dx and dt variations and the Roe solver is the most
stable for bed-level variations.

The HLL approach has been introduced by Harten, Lax and van Leer [11]. The central idea
is to assume a wave configuration for the solution that consists of two waves separating three
constant states. This assumption is correct only for hyperbolic systems of two equations, such
as one-dimensional shallow water equations. For larger systems, the two-wave assumption is not
correct. As a consequence, the resolution of physical features, such as contact surface, shear
waves and material interface, can be very inaccurate [8]. Also in floods where there is a wet/dry
interface, it is important to model the contact wave properly, otherwise a spurious shock front will
be predicted [12].

In view of the shortcoming of the HLL approach, a modification called HLLC Riemann solver,
in which C stands for Contact, was put forward by Toro et al. [13]. HLLC offers successful approx-
imation for practical applications. Both HLL and HLLC provide entropy-satisfying results [5], and
their implementation is also easy. Also the HLL and HLLC handle dry-bed situations automatically,
provided the wave speed is chosen appropriately [14]. Some authors complained about diffusivity
of the HLL and HLLC [15, 16]. In [17], 20 explicit conservative schemes have been examined for
the solution of the one-dimensional homogeneous shallow water equations. In the conclusion, for
the ease of implementation, efficiency and robustness, the HLL(C) and Osher schemes have been
recommended for first-order schemes. Also in comprehensive study of [18], the performance of the
Roe, FVS, Osher, HLL and HLLC has been evaluated according to five criteria including ease of
implementation, accuracy, applicability, simulation time and stability. In the summary of this study,
HLL and HLLC were determined as the high-ranked schemes in terms of ease of implementation.
Osher and FVS schemes were also ranked first for accuracy and simulation time, respectively.
For the applicability and stability all schemes performed identical except the Roe scheme which
had few problems in terms of applicability. Finally, it was highlighted that a first-order accurate
solution algorithm using either Osher or HLLC schemes can be recommended for the simulation
of all kinds of applications.

Based on the above literature review, the HLLC approximate Riemann solver is adopted in this
paper for further developments.
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Godunov-type method with any of the above-mentioned approximate Riemann solvers yields
a first-order accuracy. In order to achieve second-order accuracy, a number of algorithms have
been proposed. van Leer in a series of papers [19, 20] proposed the monotone upstream scheme
for conservation laws (MUSCL). Weighted average flux (WAF) is another second-order algorithm
which was introduced by Toro [21]. LeVeque [5] added a correction flux to the first-order Godunov
method to gain second-order accuracy. Piece-wise linear method [8], generalized Riemann problem
[22, 23] and piece-wise parabolic method [24] are other generalizations of Godunov first-order to
second-order method. In this paper, the first-order Godunov-type solution using the HLLC is
corrected to achieve the second-order accuracy for its application in shallow water flow modeling.

Godunov-type methods are successful in computing the convection fluxes with high level of
accuracy. In shallow water equations in addition to the convection terms, there is a source term due
to the real topography. Treatment of this source term has a great influence on the final accuracy
of the results and several researches have focused on this topic. A simple method for dealing with
the source term is the fractional step method, in which the inhomogeneous form of the equations
is split into two sets of equations, a homogeneous set and a set of ordinary differential equations.
Both the sets are solved individually during computations. This method provides relatively poor
solution for steady and quasi-steady problems [8, 18]. With suggestion of linearly reconstructing
water surface instead of water depth, Zhou et al. [25] introduced surface gradient method (SGM).
The SGM is efficient, but is limited to the Godunov-type methods, which require the variable
reconstruction step. Nujic [26] proposed to extract the static pressure term from the flux vector
and to include it in the bed slope source term. Excluding the pressure term from the flux function
will change the characteristics [27] and will cause difficulties in the application of Godunov-type
methods. Nujic’s method also suffers from a high level of diffusivity for some kinds of flows [7, 28].
Bermudez and Vazquez [29] proposed an upwind method to discretise the bed slope source term.
Vazquez-Cendon [30] applied the same idea to solve various shallow water problems. In Hubbard
and Navarro [31], the upwind method of [30] was used to make balance between the source
term and the flux gradient in flux difference splitting method. Their scheme is rather complex.
LeVeque [32] proposed a treatment to balance the source term and the flux gradient, which works
well for quasi-steady problems, but is difficult to be applied to steady transcritical flow with shock.
Rogers et al. [33, 34] suggested mathematical balancing between the flux gradient and the source
term prior to the use of a numerical method. However, neglecting or adding any term will cancel the
mathematical balancing. Two methods have been proposed by Mohammadian and Le Roux [28] to
treat the source term on unstructured grids. Valiani and Begnudelli [35] proposed DFB (divergence
form for bed slope) method to write the bed slope source term in divergence form. The DFB is
independent of any discretisation technique. They applied their scheme just for structured grids.
Marche et al. [36] developed a model which is especially designed for the simulation of wave
transformations over strongly varying topography. The influence of the source term on stability,
accuracy and conservation in shallow flow simulations has been investigated by Murrilo et al. [37]
using triangular finite volumes.

The utility of a numerical algorithm for the shallow water equations depends on its ability to deal
with various difficulties arising in applications. Since these equations admit shocks, an algorithm
should be able to accurately capture moving jump discontinuities. Many applications have realistic
arbitrary topography and regions of the domain that are sometimes dry and sometimes wet.
Consequently, the algorithm should be robust enough to deal with the appearance or preexistence
of dry states, while at the same time handles a reasonably wide range of bottom topographies.
Considering these requirements, a high-resolution Godunov-type algorithm is presented in this
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paper. It is a new extension of the first-order Godunov-type method to second-order accuracy and
is much simpler than the previous algorithms. The presented algorithm has given satisfactory results
for the already mentioned required conditions in one dimension. Complete details are presented
in the following sections.

2. GOVERNING EQUATIONS

The governing equations of one-dimensional unsteady flow in a channel of prismatic rectangular
cross-section with a sufficient small bottom slope are the Saint Venant equations. These equations
express conservation of mass and momentum. In conservative form, they are as follows:

Ut + F(U )x = S

U =
[
h

hu

]
, F(U )=

[
hu

hu2 + 1
2gh

2

]
, S =

[
0

gh(s0 − sf)

]
(1)

where U is the conservative variables vector in which, h and u are flow depth and velocity,
respectively; F(U ) the flux vector; S the source term vector, consist of bed slope S0 and friction
slope Sf.

The friction slope Sf is assumed to be given by the Manning equation:

Sf = n2u|u|
h1.33

(2)

where n is the empirical Manning resistance coefficient.
The governing equations are based on the assumptions of hydrostatic pressure distribution,

incompressibility of water and a sufficiently small channel slope. In spite of the strong simplifying
assumptions, the numerical solution of the equations still remains a computationally challeng-
ing task. This is, in the main, due to the hyperbolic character of the equations, which admit
discontinuous solution such as shocks, contact discontinuities and shear waves.

3. SOLUTION ALGORITHM

As mentioned in Section 1, a new Godunov-type algorithm for the numerical simulation of shallow
water equations is presented in this paper. The algorithm is a two-step predictor–corrector scheme.
Both steps are based on the finite volume conservative numerical integration, which results in a
second-order accurate scheme, in both space and time.

3.1. Prediction step

The explicit conservative discretised finite volume formula corresponding to Equation (1) is
expressed as

Un+1 =Un − �t

�x
[Fi+1/2 − Fi−1/2]n + Sn�t (3)

where Fi±1/2 represents the fluxes through the left and right cell interfaces; �t and �x are the
time step and grid size, respectively; and ‘n’ denotes the time level.
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In finite volume method, the key problem is the estimation of the normal flux through each
side of a cell [9]. There are several schemes to estimate this flux. At the prediction step of the
proposed algorithm, the fluxes are computed using the HLLC approximate Riemann solver. In
one-dimensional shallow water equation, the resulting fluxes from the HLL or HLLC are identical.
When additional equations due to sediment or pollutant transport are added, the HLLC results
are more accurate. Thus for the sake of completeness, HLLC method is selected in the proposed
algorithm.

In the prediction step, the conservative variables, U , are calculated using the following formula:

U =Un − �t

�x
[F p

i+1/2 − F p
i−1/2] + Sn�t (4)

where F p
i±1/2 denotes the flux of the prediction step, F p

i±1/2 = FHLLC and Sn = S(Un).

Based on [2], the numerical flux of HLLC, FHLLC, is evaluated as follows:

FHLLC =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

FL if 0�SL

F∗L if SL�0�SM

F∗R if SM�0�SR

FR if 0�SR

(5)

where FL = F(UL), FR = F(UR), UL and UR are the left and right Riemann states of a local cell
interface, respectively; F∗L and F∗R are the numerical fluxes in the left and right sides of the star
region of the Riemann solution which is divided by a shear (contact) wave; and SL , SM and SR are
the speeds of the left, shear (contact) and right waves, respectively. In Figure 1, the wave structure
assumption of the HLLC is depicted.

The flux vectors F∗L and F∗R are expressed as

F∗L =

⎡
⎢⎢⎣

F1∗
F2∗

F1∗ · �L

⎤
⎥⎥⎦ , F∗R =

⎡
⎢⎢⎣

F1∗
F2∗

F1∗ · �R

⎤
⎥⎥⎦ (6)

where �L and �R are the left and right initial values of a local Riemann problem for the
pollutant/sediment concentration (see Figure 1), and F1∗ and F2∗ are calculated using the HLL

 

 

  

Figure 1. HLLC assumption for wave structure of the Riemann problem solution.
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formula given by Harten et al. [11],

F∗ = SRFL − SL FR + SL SR(UR −UL)

SR − SL
(7)

Key to the success of HLLC approach is in identifying the correct wave speeds; SL , SM and SR
[14]. For shallow water equations, there are several possible choices. Fraccarollo and Toro [14]
recommend the use of two-rarefaction assumption for SL and SR . Toro [2] introduced new wave
speeds that are robust when there is a shock wave. In the presence of rarefaction wave, the new
speeds are the same as the characteristic speeds. For non-linear systems, the characteristic speeds
may be distinct from wave speeds. Therefore, it would be desirable to use the two rarefactions
assumption for wave speeds when there is a rarefaction wave, and Toro’s suggestion in the presence
of a shock wave. This idea has been adapted in this paper. By simultaneously considering the dry-
bed problem, the speeds can be given as follows:

SL = uL − √
ghLqL

SR = uR + √
ghRqR

if h∗>hk (shock wave) (8)

SL =min(uL − √
ghL , u∗ − √

gh∗)

SR =max(uR + √
ghR, u∗ + √

gh∗)
if h∗�hk (rarefaction wave)

SL = uR − 2
√
ghR (for hL = 0)

SR = uL + 2
√
ghL (for hR = 0)

if hk = 0 (dry bed)

SM = SLhR(uR − SR) − SRhL(uL − SL)

hR(uR − SR) − hL(uL − SL)
(9)

qk(k = L , R) is given by

qk =
√
1

2

[
(h∗ + hk)h∗

h2∗

]
(10)

where uL , uR , hL and hR are left and right initial values for a local Riemann problem, and u∗
and h∗ are calculated from

u∗ = 1
2 (uL + uR) + √

ghL − √
ghR (11)

h∗ = 1

g

[
1

2

(√
ghL + √

ghR

)
+ 1

4
(uL − uR)

]2
(12)

Treatment of the source term and the proposed method to computing Sn will be discussed in
Section 4.

3.2. Correction step

Without solving Riemann problem, the fluxes are calculated using Riemann problem states, i.e.
cell interface values of predicted variables. In contrast to the prediction step in which the flux
values were obtained in an upwind manner using the HLLC solver, correction fluxes are obtained
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in the downwind direction by direct evaluation of the flux vector. The discretised form of governing
equations after the correction step takes the following form:

Un+1 =Un − �t

�x
[Fi+1/2 − Fi−1/2] + S�t (13)

Fi±1/2 = 1
2 [F p

i±1/2 + Fc
i±1/2]

Fc
i+1/2 =

⎧⎨
⎩
F(UR

i+1/2) if ui�0

F(UL
i+1/2) if ui<0

(14)

S = 1
2 (S

n + S p), Sn = S(Un), S p = S(U ) (15)

where Un+1 represents the conservative variables at new time step (n + 1); Fc
i±1/2 the correction

step fluxes; Fi±1/2 the final flux values;UR
i+1/2/U

L
i+1/2 the predicted value of conservative variable

at right/left side of i + 1
2 cell interface and Sn/S p the source term evaluated using the previous

time step/predicted values of conservative variables.

4. TREATMENT OF THE SOURCE TERM

The treatment of the source term has an important role in the final accuracy of the results. The
source term consists of two parts, the bed slope and the friction slope. Treatment of each part will
be explained separately.

4.1. Bed slope treatment

The main subject in dealing with the bed slope is to balance it with the convection flux in each
cell at stationary flow field. This will be explained in more detail under the C-property preposition
[29]. The C-property will be explained and approved for the proposed algorithm later on, but first
the details of the source term discretization are presented below.

Implementing a staggered grid idea, the bed elevation is assigned to each cell interface and a
linear variation is assumed inside each cell (see Figure 2).

According to the definition sketch of Figure 2,

� = h + z (16)

where � is the water surface elevation, h the water depth and z the bed elevation.
With the assumption of no erosion and no sedimentation (�z/�t = 0) one would obtain the

following equation:

��

�t
= �h

�t
(17)

Using Equation (17), the continuity equation takes the form:

��

�t
+ �hu

�x
= 0 (18)
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η
z

hi+1/2hi-1/2

Bed 
Variation 

i+1ii-1Datum 
i-1/2 i+1/2

Figure 2. Definition sketch for bed slope.

The bed slope term for cell i , S1i , could be rewritten as follows:

S1i = ghi S0i (19)

S0i is the bed slope of cell i and S0i =−�z/�x |i . Regarding Figure 2, z = � − h; therefore,

− �z
�x

= �h
�x

− ��

�x
(20)

Assuming a constant water level inside each cell, i.e. ��/�x |i = 0, Equation (20) simplifies to:
−�z/�x = �h/�x . Thus, S0i can be rewritten as S0i = �h/�x |i ; therefore,

S0i = hi+1/2 − hi−1/2

�x
(21)

Using Equation (21) and also hi = (hi+1/2 + hi−1/2)/2, Equation (19) becomes

S1i = 0.5g(hi+1/2 + hi−1/2)(hi+1/2 − hi−1/2)

�x
(22)

C-property proposition
In the presence of a stationary flow field, if a numerical method could preserve the conservative
property, then it satisfies the exact C-property.

For each step of proposed algorithm, the C-property is investigated separately.

4.1.1. Prediction step. Using the HLLC solver, the following relations stand in the stationary flow
field case:

u = 0, hu = 0 (23)

SL = −√
ghL<0

SR = √
ghR>0

(24)
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Using Equation (7), the predicted flux for the interface i + 1
2 with respect to Equations (23) and

(24) can be rewritten as follows:

F p
i+1/2 =

√
ghR(0.5gh2L) − (−√

ghL(0.5gh2R))√
ghR + √

ghL
(25)

For interface i + 1
2 at stationary flow field: hR = hL = hi+1/2, thus Equation (25) is simplified to

F p
i+1/2 = 0.5gh2i+1/2 (26)

If the same procedure is repeated for the flux through the interface i − 1
2 , it can be written as

F p
i−1/2 = 0.5gh2i−1/2 (27)

Replacing Equations (22), (26) and (27) by the discretised form of governing equations, i.e.
Equation (4), results in

hui = huni − �t

�x
[0.5gh2i+1/2 − 0.5gh2i−1/2] + 0.5g�t

�x
[h2i+1/2 − h2i−1/2] (28)

The second and third terms on right-hand side of Equation (28) cancel each other; hence,

hui = huni (29)

Equation (29) approves the conservative property, hence satisfying the exact C-property of the
prediction step.

4.1.2. Correction step. In the proposed algorithm, the correction fluxes are obtained in downwind
manner. If the convection fluxes for interfaces i + 1

2 and i − 1
2 in the momentum equation are

computed and replaced in the discretised form of governing equations, the following relation will
be obtained:

hun+1
i = huni (30)

It is concluded, therefore, that the proposed algorithm satisfies the exact C-property in both
prediction and correction steps.

4.2. Friction slope treatment

Lack of spatial derivatives in this part of the source term makes its implementation easy. Using
conservative variables h, hu and Manning’s formula, the friction slope can be written as

Sf = n2hu|hu|
h10/3

(Sf)i = n2(hu)i |hu|i
h10/3i

(31)
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5. SHOCK CAPTURING TECHNIQUE

Considering the numerical phenomenon, which may result in generation of spurious oscillations,
a systematic analysis of the conditions required by a scheme to achieve oscillation free results has
been developed. Godunov [38], who introduced the important concept of monotonicity, proved
rigorously that numerical oscillations are unavoidable if one uses linear methods of accuracy
greater than 1 [4].

Solutions to conservation laws, which contain shocks and contact discontinuities, are not uniquely
determined by their initial values. The physically relevant solution from the set of weak solutions
must also satisfy the entropy conditions [4, 8]. Weak solutions are the set of solutions which
satisfy both the Rankine–Hugoniot jump condition and the governing equations. For an arbitrary
flux function F(U ), the following relationship between the shock speed S and the states UL and
UR across the shock is called the Rankine–Hugoniot jump condition:

F(UL) − F(UR) = S(UL −UR) (32)

The entropy condition simply ensures that shocks are only formed when characteristics con-
verge. Violation of this condition will result in the non-physical rarefaction shock or an expan-
sion shock [4, 17].

Monotone schemes satisfy all the above conditions, but according to Godunov [38], monotone
schemes are only first order. This represents a sever limitation, since first-order accuracy is in-
sufficient for practical purposes, the corresponding scheme being too diffusive. Hence, conditions
less severe than monotonicity have to be defined to allow the definition of schemes with an accu-
racy higher than one which generate entropy satisfying solutions without overshoots at shock and
contact discontinuities. Schemes of this type are called high-resolution schemes [4].

The keynote of above-mentioned Godunov’s theorem is to have desirable results one must use
non-linear method even when applied to linear problem [2, 4]. This important concept has been
introduced initially by van Leer [39], Boris and Book [40] and then by Sweby [41] under the form
of limiters, which control the gradients of over or under shoots. Using limiters, the total variation
dimensioning (TVD) condition will be provided, which is a weaker condition than monotonicity
[42]. TVD is more general than monotonicity, but this condition does not ensure satisfaction of the
entropy condition. Godunov-type methods will always satisfy entropy condition provided that the
Riemann solution used to define the flux at each cell interface satisfies the entropy condition [5].
In TVD technique, the solution of governing equations near the shocks or discontinuities will be of
first order, while in the smooth region it has second-order accuracy. Switching from second order
to first order and vice versa will be done using appropriate limiters. Limiters could be categorized
as two groups, slope and flux limiters.

ENO (essentially non-oscillatory scheme) and WENO (weighted essentially non-oscillatory
scheme) are other attractive techniques for shock capturing.

Methodology for the definition of a second-order high-resolution TVD scheme in the proposed
algorithm is to restrict a part of the numerical flux. A similar approach has been used by Yu and
Liu [43] and then by Lin et al. [44] in conjunction with flux vector splitting method. Utilizing the
flux limiter, a very simple approach is used for shock capturing. The flux in Equation (13) can be
rewritten as

Fi±1/2 = 1
2 [F p

i±1/2 + Fc
i±1/2]

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2021–2043
DOI: 10.1002/fld



SEA FOR SHALLOW FLOWS 2031

Fi±1/2 = F p
i±1/2 + 1

2 [Fc
i±1/2 − F p

i±1/2]

FTVD
i±1/2 = F p

i±1/2 + 1
2�(r)[Fc

i±1/2 − F p
i±1/2] (33)

where FTVD
i±1/2 is the high-resolution flux i.e. TVD flux, � the flux limiter function and r the flux

gradient ratio.
Several options are available for the flux limiter such as Superbee and Minmod functions which

are as follows:

(a) Superbee: �(r) = max[0;min(2r, 1);min(r, 2)] (34)

(b) Minmod: �(r) = max[0;min(1, r)] (35)

In addition to suppress the numerical oscillations, another advantage of using limiters is that phase
error can be essentially eliminated [5]. The argument r is the ratio of the upwind variation to the
local variation of flux, r =�upw/�loc. For cell interface i + 1

2 :

ri+1/2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fc
i−1/2 − F p

i−1/2

Fc
i+1/2 − F p

i+1/2

if uni �0

Fc
i+3/2 − F p

i+3/2

Fc
i+1/2 − F p

i+1/2

if uni <0

(36)

6. BOUNDARY CONDITIONS

According to the theory of characteristics, two physical boundary conditions, one at the upstream
end and another at the downstream end, are needed when the flow regime is subcritical. Remaining
unknown parameters at each boundary can be computed using Riemann invariants [45]. For super-
critical flow, these two boundary conditions are needed at the upstream end. Without considering
the flow regime, two types of boundary conditions can be imposed. These are open or transmissive
and close or reflective boundaries. In the first case, the velocity and depth in the boundary ghost
cells will be equal to the first grid values inside the computational domain [4]:

h0 = h1, hn+1 = hn

u0 = u1, un+1 = un
(37)

where the subscript 0 denotes the ghost cell out of the computational domain. For a close or
reflective boundary,

h0 = h1, hn+1 = hn

u0 = −u1, un+1 =−un
(38)
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7. STABILITY CRITERION

The foregoing numerical scheme is explicit, and its stability is governed by the Courant–Friedrichs–
Lewy (CFL) criterion. For a one-dimensional grid, the CFL criterion for choosing an appropriate
time step �t may be expressed as

�t =Cr · min

[
�xi

|ui | + √
ghi

]
(39)

where Cr is the Courant number specified in the range 0<Cr�1.

8. EVALUATION OF ALGORITHM

To evaluate the performance of the proposed algorithm to solve both steady and unsteady flows,
some test cases have been taken from literature. To make reasonable comparison between the
calculated results and the published data, similar numerical requirements such as Courant number
and number of grids have been established.

The test cases are categorized as two groups. At first, problems with horizontal frictionless bed
are examined to assess the capability of the algorithm in dealing with convection terms. Then test
cases with source terms due to the irregular and rough beds are used to evaluate another important
characteristic of the algorithm.

8.1. Problems with horizontal and frictionless bed

Several flux limiters have been used for this group of test cases. It was observed that the application
of Minmod in conjunction with the proposed simple efficient algorithm (SEA) yields better results,
and thus these results are presented.

8.1.1. One-dimensional dam break on a frictionless bed. Several authors have used this test in
the literature to assess the shock capturing ability of their algorithm. In this test, a vertical wall
separating water in a unit width channel with upstream depth of 5m and a downstream depth of
0.3m is removed instantaneously. The computational time step and grid size are 0.05 s and 1m,
respectively. The resulting water surface profile and velocity distribution 10 s after dam failure are
shown in Figure 3(a) and (b), along with the analytical solution of the problem. To make comparison
between the proposed algorithm and the other well-developed schemes, in Figure 3(c) and (d) the
same results with the same time step and computational cell size are presented, which have been
taken from [18]. These results have been obtained using two second-order accurate schemes, i.e.
MUSCL and a prediction–correction, both with the Osher approximate Riemann Solver. Based on
these results, good shock capturing skills can be assigned for the proposed algorithm.

8.1.2. Left critical rarefaction and right shock. The next four tests have been designed by Toro [2].
In all tests, the computational domain is a channel of 50m long, unit width frictionless and
horizontal bed. The specifications of each test included in Table I where hL , hR , uL and uR are
depth and velocity in the left and right side of x0 which is the position of initial discontinuity, and
tout is the output time. Analytical solutions have been taken from [2]. Also the numerical results
using WAF with HLLC have been presented in [2], but only for the test cases 8-1-2 and 8-1-3;
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Figure 3. One-dimensional dam break on a frictionless bed: (a), (c) water depth and
(b), (d) velocity. (a), (b) Present work and (c), (d) from [18] using MUSCL and

predictor–corrector schemes both with Osher approximate Riemann solver.

Table I. Specifications of tests (8-1-2)–(8-1-5).

Test no. hL (m) uL (m/s) hR (m) uR (m/s) x0 (m) tout (s)

8-1-2 1.0 2.5 0.1 0.0 10 7.0
8-1-3 1.0 −5.0 1.0 5.0 25 2.5
8-1-4 0.0 0.0 1.0 0.0 30 4.0
8-1-5 0.1 −3.0 0.1 3.0 25 5.0

therefore, the comparison has been made for these two tests. Similar to [2], all tests have been run
with Cr= 0.9 and 100 cells.

The initial data for test 8-1-2 cause a strong right propagating shock wave and a critical left
rarefaction wave. The results are presented in Figure 4(a). Items to check are (a) correct speed of
propagation, (b) correct strength of jump, (c) width of shock layer and (d) absence of spurious
oscillation in the vicinity of the shock [2]. The agreement between the numerical and analytical
results is good. Figure 4(b) shows the WAF results for this test.

8.1.3. Two rarefactions and nearly dry bed. The solution of this test consists of two strong
rarefaction waves traveling in opposite directions. The reason for this test is to examine the ability
of the numerical algorithm to deal with very shallow regions produced by strong rarefaction. Such
situation may lead to negative depths. The results are shown in Figure 5(a). It is evident that no
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Figure 4. Left critical rarefaction and right shock: water surface profile. (a) Present work and (b) from
[2] using WAF and HLLC approximate Riemann solver.

negative depth has appeared. The results obviously show the robustness of proposed algorithm to
deal with this kind of problems. Figure 5(b) shows the WAF results for this test.

8.1.4. Dam break problem with downstream dry bed. The downstream section of the dam is dry
in this test case. The solution consists of a single right rarefaction wave, with the wet/dry front
attached to the tail of it. The propagation of wet/dry front at the correct speed is one major
difficulty of numerical methods. In a real application in which such fronts are to be propagated
by several kilometers, the propagation speed and thus the predicted wave arrival time will suffer
from considerable errors, rendering the prediction unreliable or even useless [2]. Methods based
on the assumption that the bed is wet throughout are incorrect for these problems [2]. In Figure 6,
the calculated and analytical water surface profiles are shown. Close agreement can be seen. Also
a low level of diffusivity can be seen in the rarefaction part of this test.

8.1.5. Appearance of dry region. This test has been designed to produce a dry region in the middle
part of computational domain. The aim is to examine the capability of algorithm in dealing with
wet/dry fronts traveling in opposite directions. Numerical methods are bound to experience serious
difficulties in resolving these conditions [2]. It is seen form Figure 7 that proposed algorithm has
good capability in forecasting the appearance of dry region.
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Figure 5. Two rarefactions and nearly dry bed: water surface profile. (a) Present work and (b) from [2]
using WAF and HLLC approximate Riemann solver.
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Figure 6. Dam-break problem with downstream dry bed: water surface profile.

8.2. Problems with irregular and rough bed

In test cases 8-2-1 till 8-2-3, the bed slope is just present in the source term. However in test case
8-2-4, the bed and friction slopes are both involved. In contrast with the test cases with horizontal
and frictionless bed, these groups of test cases yield better results when in the proposed SEA, the
Superbee function is used as a flux limiter.
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8.2.1. Tidal wave flow. A test problem originally considered by Bermudez and Vazquez [29] is
discussed here. This is a one-dimensional problem with bed topography defined by

H(x)= 50.5 − 40x

L
− 10 sin

[
�

(
4x

L
− 1

2

)]

where L = 14 000m is the channel length. The initial and boundary conditions are

ICs=
{
h(x, 0) = H(x)

u(x, 0) = 0

BCs=

⎧⎪⎨
⎪⎩

h(0, t) = H(0) + 4 − 4 sin

[
�

(
4t

86 400
+ 1

2

)]

u(L , t) = 0

With the above conditions, Bermudez and Vazquez [29] derived the following asymptotic analytical
solutions:

h(x, t) = H(x) + 4 − 4 sin

[
�

(
4t

86 400
+ 1

2

)]

u(x, t) = (x − L)�

5400h(x, t)
cos

[
�

(
4t

86 400
+ 1

2

)]

The numerical results of this test case with �x = 280m at t = 7552.13 s are presented in Figure 8(a)
and (b). These figures show very close agreement between the numerical and analytical solutions.
Figure 8(c) and (d) is same as 8(a) and (b), respectively. These results related to MUSCL, with
HLL approximate Riemann solver, and SGM for the source term treatment [25].

8.2.2. Steady transcritical flow with a shock over a bump. This benchmark test which has been
used by several researchers comprises one-dimensional steady flow in a 25m long, unit width
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Figure 8. Tidal wave flow: (a), (c) water surface and bed elevation and (b), (d) velocity distribution.
(a), (b) Present work and (c), (d) from [25] using MUSCL schemes with HLL approximate Riemann

solver and SGM for the treatment of the source term.

channel with a bump defined by

Zb(x)=
{
0.2 − 0.05(x − 10)2 if 8<x<12

0 otherwise

where x is the distance along the channel. The goal is to assess the ability of the algorithm to
converge to a steady-state solution. This problem was introduced by Goutal and Maurel [46].
Depending on the initial and boundary conditions, the flow may be transcritical with or without
a shock, or subcritical. Because it is challenging for a numerical algorithm to predict a steady
discontinuous solution over a non-uniform bathymetry, the boundary conditions have been chosen
to include transcritical flow with a shock over the bump. Thus, unit discharge of q = 0.18m2/s and
water depth of h = 0.33m were imposed as an upstream and downstream boundary conditions,
respectively. One hundred and fifty computational cells have been used in the computations. It
is clearly seen from Figure 9(a) and (b) that the proposed algorithm can provide a solution of
accuracy comparable to the analytical results. A low level of oscillation appears in numerical results
of discharge. This is the case with all of presented results in the literature even with much more
grids, for instance, 200 grids in [25], 256 grids in [34] and 2000× 4 grids in a two-dimensional
model in [35]. It can be concluded that in the presence of real topography, the C-property does
not guarantee that steady-state condition with non-zero discharge will be well captured. This issue
has also been reported before by Mohammadian and Le Roux [28]. For comparison, in Figure 9(c)
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Figure 9. Steady transcritical flow with a shock over a bump: (a), (c) water surface and bed elevation
and (b), (d) discharge. (a), (b) Present work and (c), (d) from [34] using MUSCL schemes with Roe

approximate Riemann solver and mathematical balancing for the source term.

and (d) the results of [34] are also presented. These results have been obtained using MUSCL
schemes with Roe approximate Riemann solver and mathematical balancing of the source term.

8.2.3. Small perturbation of a steady-state solution. This test case has been designed by
LeVeque [32]. It was chosen to demonstrate the capability of the proposed algorithm for compu-
tations involving small perturbation of the water surface, and to show that the method also works
well in the modeling of wave propagation problems. The computational domain is a unit width
channel of length 1m and the bed profile is defined as

Zb =
{
0.25[cos(�(x − 0.5)/0.1) + 1] if |x − 0.5|<0.1

0 otherwise

on 0<x<1 with H(0) = 1m and g= 1m/s2. The initial condition was the stationary solution of
u = 0m/s and

�(x, 0) =
{
H(0) + � if 0.1<x<0.2

0 otherwise

where � is the small perturbation in the stationary water surface. Theoretically, this disturbance
splits into two waves, propagating left and right. Many numerical methods have difficulty with
calculations involving such small perturbations of the water surface [25]. The calculated results
for �= 0.2m and �= 0.01m at t = 0.7 s are shown in Figure 10(a) and (b), respectively. The
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Figure 10. Small perturbation of a steady-state solution: (a), (c) water surface profile for �= 0.2m and
(b), (d) water surface profile for �= 0.01m. (a), (b) Present work and (c), (d) from [15] using MUSCL

schemes with Roe approximate Riemann solver.

analytical results are obtained using very fine (2000) grids. Good agreement between numerical
and analytical results is achieved. In comparison with some references, which have used too many
grids for numerical computation, in the present work, the computational domain has been divided
into just 100 cells. The same results using MUSCL and Roe approximate Riemann Solver [15]
are shown in Figure 10(c) and (d), for comparison.

8.2.4. Sub-super-sub-critical flow with hydraulic jump. In order to assess the proposed algorithm
more realistically, the friction slope of the source term should be incorporated. For this purpose,
a test case designed by Mac Donald et al. [47] has been selected. The problem has a subcritical
inflow and outflow with a supercritical central section. The transition from the subcritical to the
supercritical state is carried out through the hydraulic jump. The domain includes a rectangular
channel of 100m long with unit discharge of 2m2/s and the Manning’s roughness coefficient of
0.03. One hundred computational cells have been used. Figure 11(a) represents the comparison
between the analytical and numerical results for the water surface. The results confirm the good
performance of the proposed algorithm. In Figure 11(b) and (c) the magnified shock region is
shown. Figure 11(b) has been obtained using SEA and Figure 11(c) has been taken from [48].
In Figure 11(c), the results of MUSCL and the first-order Roe have been shown. In addition, the
result of a second-order scheme, named ‘symmetric’, is presented in Figure 11(c). All the schemes
have a small deviation from analytical solution.
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Figure 11. Sub-super-sub-critical flow with hydraulic jump: (a) water surface and bed
elevation and (b), (c) magnified shock region. (b) Present work and (c) from [48] using

MUSCL and Roe approximate Riemann solver.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2021–2043
DOI: 10.1002/fld



SEA FOR SHALLOW FLOWS 2041

9. CONCLUSION

A new package, which is called SEA, simple efficient algorithm, is proposed for the numerical
modeling of non-linear system of shallow water equations. SEA is a Godunov-type solution and
is second-order accurate both in time and space. This accuracy has been achieved using a two-
step predictor–corrector algorithm. At the prediction step the HLLC Riemann solver is used. The
success of the HLLC greatly depends on proper choice of the wave speeds. A new combination of
existing relations for the wave speeds is used at the prediction step. At the correction step, the fluxes
are easily obtained using the Riemann states without solving the Riemann problem. To consider
variable topography, a new simple approach for source term has been proposed which satisfies
the C-property in conjunction with the proposed flux computation methods, both in prediction and
correction steps. Since the spurious oscillations in second-order schemes are inherent, an efficient
flux limiting technique is used to supply TVD property and thus to overcome this defect.

The overall competency of the new algorithm in dealing with various types of problems encoun-
tered in hydraulic modeling is assessed by several test cases and compared with well-developed
schemes. Main features of the present work are simplicity and efficiency, which are desirable in
dealing with complex practical problems.

This work could be a base for a more general two-dimensional model, the result of which would
be presented in the near future.
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